## Valid Orderings of Real Hyperplane Arrangements

##### Author(s)

Stanley, Richard P
Download454_2015_Article_9683.pdf (481.6Kb)

OPEN_ACCESS_POLICY

# Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

##### Terms of use

##### Metadata

Show full item record##### Abstract

Given a real finite hyperplane arrangement A and a point p not on any of the hyperplanes, we define an arrangement vo(A,p), called the valid order arrangement, whose regions correspond to the different orders in which a line through p can cross the hyperplanes in A. If A is the set of affine spans of the facets of a convex polytope P and p lies in the interior of P, then the valid orderings with respect to p are just the line shellings of P where the shelling line contains p. When p is sufficiently generic, the intersection lattice of vo(A,p) is the Dilworth truncation of the semicone of A. Various applications and examples are given. For instance, we determine the maximum number of line shellings of a d-polytope with m facets when the shelling line contains a fixed point p. If P is the order polytope of a poset, then the sets of facets visible from a point involve a generalization of chromatic polynomials related to list colorings.

##### Date issued

2015-04##### Department

Massachusetts Institute of Technology. Department of Mathematics##### Journal

Discrete & Computational Geometry

##### Publisher

Springer US

##### Citation

Stanley, Richard P. “Valid Orderings of Real Hyperplane Arrangements.” Discrete & Computational Geometry 53.4 (2015): 951–964.

Version: Author's final manuscript

##### ISSN

0179-5376

1432-0444