Show simple item record

dc.contributor.authorRothvoss, Thomas
dc.date.accessioned2016-10-06T21:10:14Z
dc.date.available2016-10-06T21:10:14Z
dc.date.issued2012-07
dc.date.submitted2011-11
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/104664
dc.description.abstractWe prove that there are 0/1 polytopes P⊆R[superscript n] that do not admit a compact LP formulation. More precisely we show that for every n there is a set X⊆{0,1}[superscript n] such that conv(X) must have extension complexity at least 2[superscript n/2⋅(1−o(1)] . In other words, every polyhedron Q that can be linearly projected on conv(X) must have exponentially many facets. In fact, the same result also applies if conv(X) is restricted to be a matroid polytope. Conditioning on NP⊈P[subscript /poly], our result rules out the existence of a compact formulation for any NP -hard optimization problem even if the formulation may contain arbitrary real numbers.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-012-0574-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSome 0/1 polytopes need exponential size extended formulationsen_US
dc.typeArticleen_US
dc.identifier.citationRothvoß, Thomas. “Some 0/1 Polytopes Need Exponential Size Extended Formulations.” Mathematical Programming 142.1–2 (2013): 255–268.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorRothvoss, Thomas
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:36:19Z
dc.language.rfc3066en
dc.rights.holderSpringer and Mathematical Optimization Society
dspace.orderedauthorsRothvoß, Thomasen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record