Show simple item record

dc.contributor.authorLiu, Fu
dc.contributor.authorStanley, Richard P
dc.date.accessioned2016-10-06T22:10:23Z
dc.date.available2016-10-06T22:10:23Z
dc.date.issued2014-10
dc.date.submitted2013-12
dc.identifier.issn1382-4090
dc.identifier.issn1572-9303
dc.identifier.urihttp://hdl.handle.net/1721.1/104774
dc.description.abstractLet T be a collection of 3-element subsets S of {1,…,n} with the property that if i<j<k and a<b<c are two 3-element subsets in S, then there exists an integer sequence x[subscript 1]<x[subscript 2]<⋯<x[subscript n] such that x[subscript i],x[subscript j],x[subscript k] and x[subscript a],x[subscript b],x[subscript c] are arithmetic progressions. We determine the number of such collections T and the number of them of maximum size. These results confirm two conjectures of Noam Elkies.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1068625)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11139-014-9623-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleA distributive lattice connected with arithmetic progressions of length threeen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Fu, and Richard P. Stanley. “A Distributive Lattice Connected with Arithmetic Progressions of Length Three.” The Ramanujan Journal 36.1–2 (2015): 203–226.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorStanley, Richard P
dc.relation.journalThe Ramanujan Journalen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:45:00Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsLiu, Fu; Stanley, Richard P.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record