Show simple item record

dc.contributor.authorGu, Defeng
dc.contributor.authorAllende-Alba, Gerardo
dc.contributor.authorMontenbruck, Oliver
dc.contributor.authorWang, Zhengming
dc.contributor.authorHerring, Thomas A
dc.contributor.authorJu, Bing
dc.date.accessioned2016-10-06T22:39:22Z
dc.date.available2016-10-06T22:39:22Z
dc.date.issued2015-11
dc.date.submitted2015-04
dc.identifier.issn1080-5370
dc.identifier.issn1521-1886
dc.identifier.urihttp://hdl.handle.net/1721.1/104780
dc.description.abstractOrbital maneuvers are usually performed as needed for low earth orbiters to maintain a predefined trajectory or formation-flying configuration. To avoid unexpected discontinuities and to connect pre- and post-maneuver arcs with a minimal set of parameters, a maneuver has to be considered in the routine GPS-based orbit determinations. We propose a maneuver handling method in a reduced-dynamic scheme. With the proper thrust modeling and numerical integration strategy, the effects caused by orbital maneuver can be largely eliminated. The performance for both single-satellite precise orbit determination (POD) and inter-satellite precise baseline determination (PBD) is demonstrated using selected data sets from the Gravity Recovery and Climate Experiment (GRACE) mission. For the POD results, the orbit determination residuals indicate that the orbit with maneuver modeling is well fit to the GPS observations. The external orbit validation shows that the GRACE-B orbits obtained from our approach match the DLR reference orbits better than 3 cm (3D RMS), which is comparable to the result of the maneuver-free GRACE-A satellite. For the PBD results, on average 87 % of double-difference phase ambiguities can be resolved to integers and an RMS of the K-band ranging system residuals of better than 0.7 mm can be achieved, even though the orbital maneuver was performed on the spacecraft. Furthermore, the actual maneuver performance derived from the POD and PBD results provides rigorous feedback on the thruster system, which is not only beneficial for current maneuver assessment but also for future maneuver plans.en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grants 61370013 and 91438202)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10291-015-0505-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titlePrecise orbit and baseline determination for maneuvering low earth orbitersen_US
dc.typeArticleen_US
dc.identifier.citationJu, Bing et al. “Precise Orbit and Baseline Determination for Maneuvering Low Earth Orbiters.” GPS Solutions (2015): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorHerring, Thomas A
dc.contributor.mitauthorJu, Bing
dc.relation.journalGPS Solutionsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:36:32Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsJu, Bing; Gu, Defeng; Herring, Thomas A.; Allende-Alba, Gerardo; Montenbruck, Oliver; Wang, Zhengmingen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-7666-2110
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record