Show simple item record

dc.contributor.authorBernstein, Jacob
dc.contributor.authorBreiner, Christine Elaine
dc.date.accessioned2016-10-17T14:55:06Z
dc.date.available2016-10-17T14:55:06Z
dc.date.issued2012-12
dc.date.submitted2011-03
dc.identifier.issn0944-2669
dc.identifier.issn1432-0835
dc.identifier.urihttp://hdl.handle.net/1721.1/104844
dc.description.abstractIn this note, we use a result of Osserman and Schiffer (Arch. Rational Mech. Anal. 58:285–307, 1975) to give a variational characterization of the catenoid. Namely, we show that subsets of the catenoid minimize area within a geometrically natural class of minimal annuli. To the best of our knowledge, this fact has gone unremarked upon in the literature. As an application of the techniques, we give a sharp condition on the lengths of a pair of connected, simple closed curves σ1 and σ2 lying in parallel planes that precludes the existence of a connected minimal surface Σ with ∂Σ=σ1∪σ2.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-0902721)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS- 0902718)en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00526-012-0579-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleA variational characterization of the catenoiden_US
dc.typeArticleen_US
dc.identifier.citationBernstein, Jacob, and Christine Breiner. “A Variational Characterization of the Catenoid.” Calculus of Variations and Partial Differential Equations, vol. 49, no. 1–2, December 2012, pp. 215–232.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorBreiner, Christine Elaine
dc.relation.journalCalculus of Variations and Partial Differential Equationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:28:25Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsBernstein, Jacob; Breiner, Christineen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record