dc.contributor.author | Bernstein, Jacob | |
dc.contributor.author | Breiner, Christine Elaine | |
dc.date.accessioned | 2016-10-17T14:55:06Z | |
dc.date.available | 2016-10-17T14:55:06Z | |
dc.date.issued | 2012-12 | |
dc.date.submitted | 2011-03 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.issn | 1432-0835 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/104844 | |
dc.description.abstract | In this note, we use a result of Osserman and Schiffer (Arch. Rational Mech. Anal. 58:285–307, 1975) to give a variational characterization of the catenoid. Namely, we show that subsets of the catenoid minimize area within a geometrically natural class of minimal annuli. To the best of our knowledge, this fact has gone unremarked upon in the literature. As an application of the techniques, we give a sharp condition on the lengths of a pair of connected, simple closed curves σ1 and σ2 lying in parallel planes that precludes the existence of a connected minimal surface Σ with ∂Σ=σ1∪σ2. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS-0902721) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS- 0902718) | en_US |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00526-012-0579-z | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | A variational characterization of the catenoid | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bernstein, Jacob, and Christine Breiner. “A Variational Characterization of the Catenoid.” Calculus of Variations and Partial Differential Equations, vol. 49, no. 1–2, December 2012, pp. 215–232. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.contributor.mitauthor | Breiner, Christine Elaine | |
dc.relation.journal | Calculus of Variations and Partial Differential Equations | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-08-18T15:28:25Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer-Verlag Berlin Heidelberg | |
dspace.orderedauthors | Bernstein, Jacob; Breiner, Christine | en_US |
dspace.embargo.terms | N | en |
mit.license | PUBLISHER_POLICY | en_US |