Show simple item record

dc.contributor.authorPierce, Elizabeth
dc.contributor.authorCan, Mehmet
dc.contributor.authorRagsdale, Stephen W.
dc.contributor.authorGibson, Marcus Ian
dc.contributor.authorChen, Yang-Ting
dc.contributor.authorJohnson, Aileen C.
dc.contributor.authorDrennan, Catherine L.
dc.date.accessioned2016-10-19T15:15:53Z
dc.date.available2016-10-19T15:15:53Z
dc.date.issued2016-01
dc.date.submitted2015-09
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/104848
dc.description.abstractThiamine pyrophosphate (TPP)-dependent oxalate oxidoreductase (OOR) metabolizes oxalate, generating two molecules of CO[subscript 2] and two low-potential electrons, thus providing both the carbon and reducing equivalents for operation of the Wood−Ljungdahl pathway of acetogenesis. Here we present structures of OOR in which two different reaction intermediate bound states have been trapped: the covalent adducts between TPP and oxalate and between TPP and CO[subscript 2]. These structures, along with the previously determined structure of substrate-free OOR, allow us to visualize how active site rearrangements can drive catalysis. Our results suggest that OOR operates via a bait-and-switch mechanism, attracting substrate into the active site through the presence of positively charged and polar residues, and then altering the electrostatic environment through loop and side chain movements to drive catalysis. This simple but elegant mechanism explains how oxalate, a molecule that humans and most animals cannot break down, can be used for growth by acetogenic bacteria.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Grant GM069857)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant GM39451)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship, Grant 1122374)en_US
dc.description.sponsorshipMartin Family Society of Fellows for Sustainabilityen_US
dc.description.sponsorshipHoward Hughes Medical Institute (Investigator)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1518537113en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleOne-carbon chemistry of oxalate oxidoreductase captured by X-ray crystallographyen_US
dc.typeArticleen_US
dc.identifier.citationGibson, Marcus I., Percival Yang-Ting Chen, Aileen C. Johnson, Elizabeth Pierce, Mehmet Can, Stephen W. Ragsdale, and Catherine L. Drennan. “One-Carbon Chemistry of Oxalate Oxidoreductase Captured by X-Ray Crystallography.” Proc Natl Acad Sci USA 113, no. 2 (December 28, 2015): 320–325. © 2016 National Academy of Sciences.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorGibson, Marcus Ian
dc.contributor.mitauthorChen, Yang-Ting
dc.contributor.mitauthorJohnson, Aileen C.
dc.contributor.mitauthorDrennan, Catherine L.
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGibson, Marcus I.; Chen, Percival Yang-Ting; Johnson, Aileen C.; Pierce, Elizabeth; Can, Mehmet; Ragsdale, Stephen W.; Drennan, Catherine L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7362-9801
dc.identifier.orcidhttps://orcid.org/0000-0001-5486-2755
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record