On the Distribution of Atkin and Elkies Primes
Author(s)
Shparlinski, Igor E.; Sutherland II, Andrew Victor
Download10208_2013_Article_9181.pdf (330.1Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Given an elliptic curve E over a finite field F[subscript q] of q elements, we say that an odd prime ℓ∤q is an Elkies prime for E if t[superscript 2][subscript E]−4q is a square modulo ℓ, where t[subscript E]=q+1−#E(F[subscript q]) and #E(F[subscript q]) is the number of F[subscript q]-rational points on E; otherwise, ℓ is called an Atkin prime. We show that there are asymptotically the same number of Atkin and Elkies primes ℓ<L on average over all curves E over F[subscript q], provided that L≥(log q)[superscript ε] for any fixed ε>0 and a sufficiently large q. We use this result to design and analyze a fast algorithm to generate random elliptic curves with #E(F[subscript p]) prime, where p varies uniformly over primes in a given interval [x,2x].
Date issued
2014-02Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Foundations of Computational Mathematics
Publisher
Springer US
Citation
Shparlinski, Igor E., and Andrew V. Sutherland. “On the Distribution of Atkin and Elkies Primes.” Foundations of Computational Mathematics 14.2 (2014): 285–297. © SFoCM 2014
Version: Author's final manuscript
ISSN
1615-3375
1615-3383