MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Isomorphisms, automorphisms, and generalized involution models of projective reflection groups

Author(s)
Caselli, Fabrizio; Marberg, Eric Paul
Thumbnail
Download11856_2013_Article_44.pdf (484.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We investigate the generalized involution models of the projective reflection groups G(r, p, q, n). This family of groups parametrizes all quotients of the complex reflection groups G(r, p, n) by scalar subgroups. Our classification is ultimately incomplete, but we provide several necessary and sufficient conditions for generalized involution models to exist in various cases. In the process we solve several intermediate problems concerning the structure of projective reflection groups. We derive a simple criterion for determining whether two groups G(r, p, q, n) and G(r, p′, q′, n) are isomorphic. We also describe explicitly the form of all automorphisms of G(r, p, q, n), outside a finite list of exceptional cases. Building on prior work, this allows us to prove that G(r, p, 1, n) has a generalized involution model if and only if G(r, p, 1, n) ≌ G(r, 1, p, n). We also classify which groups G(r, p, q, n) have generalized involution models when n = 2, or q is odd, or n is odd.
Date issued
2013-08
URI
http://hdl.handle.net/1721.1/104925
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Israel Journal of Mathematics
Publisher
The Hebrew University Magnes Press
Citation
Caselli, Fabrizio, and Eric Marberg. “Isomorphisms, Automorphisms, and Generalized Involution Models of Projective Reflection Groups.” Israel Journal of Mathematics 199.1 (2014): 433–483. © 2016 Springer International Publishing AG
Version: Final published version
ISSN
0021-2172
1565-8511

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.