Show simple item record

dc.contributor.authorHaakonsen, Christian Bernt
dc.contributor.authorHutchinson, Ian Horner
dc.contributor.authorZhou, Chuteng
dc.date.accessioned2016-10-21T22:29:10Z
dc.date.available2016-10-21T22:29:10Z
dc.date.issued2015-03
dc.date.submitted2015-01
dc.identifier.issn1070-664X
dc.identifier.issn1089-7674
dc.identifier.urihttp://hdl.handle.net/1721.1/104933
dc.description.abstractThe solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past nonmagnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the nonlinear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant de-sc0010491)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4915525en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleKinetic electron and ion instability of the lunar wake simulated at physical mass ratioen_US
dc.typeArticleen_US
dc.identifier.citationHaakonsen, Christian Bernt, Ian H. Hutchinson, and Chuteng Zhou. “Kinetic Electron and Ion Instability of the Lunar Wake Simulated at Physical Mass Ratio.” Physics of Plasmas 22.3 (2015): 32311.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorHaakonsen, Christian Bernt
dc.contributor.mitauthorHutchinson, Ian Horner
dc.contributor.mitauthorZhou, Chuteng
dc.relation.journalPhysics of Plasmasen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHaakonsen, Christian Bernt; Hutchinson, Ian H.; Zhou, Chutengen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8899-7479
dc.identifier.orcidhttps://orcid.org/0000-0003-3796-7357
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record