Show simple item record

dc.contributor.authorRussakovsky, Olga
dc.contributor.authorDeng, Jia
dc.contributor.authorSu, Hao
dc.contributor.authorKrause, Jonathan
dc.contributor.authorSatheesh, Sanjeev
dc.contributor.authorMa, Sean
dc.contributor.authorHuang, Zhiheng
dc.contributor.authorKarpathy, Andrej
dc.contributor.authorKhosla, Aditya
dc.contributor.authorBernstein, Michael
dc.contributor.authorBerg, Alexander C.
dc.contributor.authorFei-Fei, Li
dc.date.accessioned2016-10-24T16:46:16Z
dc.date.available2016-10-24T16:46:16Z
dc.date.issued2015-04
dc.date.submitted2014-08
dc.identifier.issn0920-5691
dc.identifier.issn1573-1405
dc.identifier.urihttp://hdl.handle.net/1721.1/104944
dc.description.abstractThe ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11263-015-0816-yen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleImageNet Large Scale Visual Recognition Challengeen_US
dc.typeArticleen_US
dc.identifier.citationRussakovsky, Olga et al. “ImageNet Large Scale Visual Recognition Challenge.” International Journal of Computer Vision 115.3 (2015): 211–252.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorKhosla, Aditya
dc.relation.journalInternational Journal of Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:41:39Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsRussakovsky, Olga; Deng, Jia; Su, Hao; Krause, Jonathan; Satheesh, Sanjeev; Ma, Sean; Huang, Zhiheng; Karpathy, Andrej; Khosla, Aditya; Bernstein, Michael; Berg, Alexander C.; Fei-Fei, Lien_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-0007-3352
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record