dc.contributor.author | Bellamy, Gwyn | |
dc.contributor.author | Schedler, Travis | |
dc.date.accessioned | 2016-10-24T16:50:25Z | |
dc.date.available | 2016-10-24T16:50:25Z | |
dc.date.issued | 2012-04 | |
dc.date.submitted | 2012-08 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.issn | 1432-1823 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/104945 | |
dc.description | C2 C2 ∼= C4. | en_US |
dc.description.abstract | We show that the quotient C[superscript 4]/G admits a symplectic resolution for G = Q[subscript 8] x [subscript Z/2]D[subscript 8] < Sp[subscript 4](C). Here Q[subscript 8] is the quaternionic group of order eight and D[subscript 8] is the dihedral group of order eight, and G is the quotient of their direct product which identifies the nontrivial central elements −Id of each. It is equipped with the tensor product representation C[superscript 2] ⊠ C[superscript 2] ≅ C[superscript 4]. This group is also naturally a subgroup of the wreath product group Q[superscript 8][subscript 2] ⋊ S[subscript 2] < Sp[subscript 4](C). We compute the singular locus of the family of commutative spherical symplectic reflection algebras deforming C[superscript 4]/G. We also discuss preliminary investigations on the more general question of classifying linear quotients V/G admitting symplectic resolutions. | en_US |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00209-012-1028-6 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer-Verlag | en_US |
dc.title | A new linear quotient of C 4 admitting a symplectic resolution | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bellamy, Gwyn, and Travis Schedler. “A New Linear Quotient of C 4 Admitting a Symplectic Resolution.” Mathematische Zeitschrift 273.3–4 (2013): 753–769. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Schedler, Travis | |
dc.relation.journal | Mathematische Zeitschrift | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-08-18T15:23:52Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer-Verlag | |
dspace.orderedauthors | Bellamy, Gwyn; Schedler, Travis | en_US |
dspace.embargo.terms | N | en |
mit.license | PUBLISHER_POLICY | en_US |