| dc.contributor.author | Van den Bergh, Michel | |
| dc.contributor.author | Trigo Neri Tabuada, Goncalo Jorge | |
| dc.date.accessioned | 2016-10-24T20:10:05Z | |
| dc.date.available | 2016-10-24T20:10:05Z | |
| dc.date.issued | 2014-03 | |
| dc.identifier.issn | 1474-7480 | |
| dc.identifier.issn | 1475-3030 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/104960 | |
| dc.description.abstract | Let k be a base commutative ring, R a commutative ring of coefficients, X a quasi-compact quasi-separated k-scheme with m connected components, A a sheaf of Azumaya algebras over X of rank (r[subscript 1], . . . , r[subscript m]), and Hmo0(k)[subscript R] the category of noncommutative motives with R-coefficients. Assume that 1/r ∈ R with r := r[subscript 1] ×· · ·×r[subscript m]. Under these assumptions, we prove that the noncommutative motives with R-coefficients of X and A are isomorphic. As an application, we show that all the R-linear additive invariants of X and A are exactly the same. Examples include (nonconnective) algebraic K-theory, cyclic homology (and all its variants), topological Hochschild homology, etc. Making use of these isomorphisms, we then compute the R-linear additive invariants of differential operators in positive characteristic, of cubic fourfolds containing a plane, of Severi-Brauer varieties, of Clifford algebras, of quadrics, and of finite dimensional k-algebras of finite global dimension. Along the way we establish two results of independent interest. The first one asserts that every element α ∈ K[subscript 0](X) of rank (r[subscript 1], . . . , r[subscript m]) becomes invertible in the R-linearized Grothendieck group K[subscript 0](X)[subscript R], and the second one that every additive invariant of finite dimensional algebras of finite global dimension is unaffected under nilpotent extensions. | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Cambridge University Press | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1017/S147474801400005X | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | Noncommutative motives of Azumaya algebras | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Tabuada, Gonçalo, and Michel Van den Bergh. “Noncommutative Motives of Azumaya Algebras.” Journal of the Institute of Mathematics of Jussieu 14.2 (2015): 379–403. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Trigo Neri Tabuada, Goncalo Jorge | |
| dc.relation.journal | Journal of the Institute of Mathematics of Jussieu | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dspace.orderedauthors | Tabuada, Gonçalo; Van den Bergh, Michel | en_US |
| dspace.embargo.terms | N | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0001-5558-9236 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |