Show simple item record

dc.contributor.authorVan den Bergh, Michel
dc.contributor.authorTrigo Neri Tabuada, Goncalo Jorge
dc.date.accessioned2016-10-24T20:10:05Z
dc.date.available2016-10-24T20:10:05Z
dc.date.issued2014-03
dc.identifier.issn1474-7480
dc.identifier.issn1475-3030
dc.identifier.urihttp://hdl.handle.net/1721.1/104960
dc.description.abstractLet k be a base commutative ring, R a commutative ring of coefficients, X a quasi-compact quasi-separated k-scheme with m connected components, A a sheaf of Azumaya algebras over X of rank (r[subscript 1], . . . , r[subscript m]), and Hmo0(k)[subscript R] the category of noncommutative motives with R-coefficients. Assume that 1/r ∈ R with r := r[subscript 1] ×· · ·×r[subscript m]. Under these assumptions, we prove that the noncommutative motives with R-coefficients of X and A are isomorphic. As an application, we show that all the R-linear additive invariants of X and A are exactly the same. Examples include (nonconnective) algebraic K-theory, cyclic homology (and all its variants), topological Hochschild homology, etc. Making use of these isomorphisms, we then compute the R-linear additive invariants of differential operators in positive characteristic, of cubic fourfolds containing a plane, of Severi-Brauer varieties, of Clifford algebras, of quadrics, and of finite dimensional k-algebras of finite global dimension. Along the way we establish two results of independent interest. The first one asserts that every element α ∈ K[subscript 0](X) of rank (r[subscript 1], . . . , r[subscript m]) becomes invertible in the R-linearized Grothendieck group K[subscript 0](X)[subscript R], and the second one that every additive invariant of finite dimensional algebras of finite global dimension is unaffected under nilpotent extensions.en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/S147474801400005Xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNoncommutative motives of Azumaya algebrasen_US
dc.typeArticleen_US
dc.identifier.citationTabuada, Gonçalo, and Michel Van den Bergh. “Noncommutative Motives of Azumaya Algebras.” Journal of the Institute of Mathematics of Jussieu 14.2 (2015): 379–403.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTrigo Neri Tabuada, Goncalo Jorge
dc.relation.journalJournal of the Institute of Mathematics of Jussieuen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsTabuada, Gonçalo; Van den Bergh, Michelen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5558-9236
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record