MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Differentiability of the Arrival Time

Author(s)
Colding, Tobias; Minicozzi, William
Thumbnail
DownloadColding_Differentiability of the.pdf (171.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
For a monotonically advancing front, the arrival time is the time when the front reaches a given point. We show that it is twice differentiable everywhere with uniformly bounded second derivative. It is smooth away from the critical points where the equation is degenerate. We also show that the critical set has finite codimensional 2 Hausdorff measure. For a monotonically advancing front, the arrival time is equivalent to the level set method, a~priori not even differentiable but only satisfying the equation in the viscosity sense . Using that it is twice differentiable and that we can identify the Hessian at critical points, we show that it satisfies the equation in the classical sense. The arrival time has a game theoretic interpretation. For the linear heat equation, there is a game theoretic interpretation that relates to Black-Scholes option pricing. From variations of the Sard and Łojasiewicz theorems, we relate differentiability to whether singularities all occur at only finitely many times for flows.
Date issued
2016-10
URI
http://hdl.handle.net/1721.1/105100
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications on Pure and Applied Mathematics
Publisher
John Wiley & Sons
Citation
Colding, Tobias Holck, and William P. Minicozzi II. "Differentiability of the Arrival Time." Communications on Pure and Apploed Mathematics Volume 69, Issue 12 (December 2016), pp.2349–2363.
Version: Author's final manuscript
ISSN
00103640

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.