MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression

Author(s)
Bachmann, Olivier; Kayzar, Theresa M.; Nelson, Bruce K.; Izbekov, Pavel E.; Bauer, Ann Melissa
Thumbnail
Download410_2014_Article_1067.pdf (1.329Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956–present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts–basaltic andesites are more radiogenic than Bezymianny andesites ([superscript 208]Pb/[superscript 204]Pb = 37.850–37.903, [superscript 207]Pb/[superscript 204]Pb = 15.468–15.480, and [superscript 206]Pb/[superscript 204]Pb = 18.249–18.278 at Bezymianny; [superscript 208]Pb/[superscript 204]Pb = 37.907–37.949, [superscript 207]Pb/[superscript 204]Pb = 15.478–15.487, and [superscript 206]Pb/[superscript 204]Pb = 18.289–18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/105115
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Contributions to Mineralogy and Petrology
Publisher
Springer Berlin Heidelberg
Citation
Kayzar, Theresa M. et al. “Deciphering Petrogenic Processes Using Pb Isotope Ratios from Time-Series Samples at Bezymianny and Klyuchevskoy Volcanoes, Central Kamchatka Depression.” Contributions to Mineralogy and Petrology 168.4 (2014): n. pag.
Version: Author's final manuscript
ISSN
0010-7999
1432-0967

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.