Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2016-10-28T17:08:58Z
dc.date.available2016-10-28T17:08:58Z
dc.date.issued2014-08
dc.date.submitted2014-06
dc.identifier.issn1088-4165
dc.identifier.urihttp://hdl.handle.net/1721.1/105136
dc.description.abstractWe define and study a correspondence between the set of distinguished G[superscript 0]-conjugacy classes in a fixed connected component of a reductive group G (with G[superscript 0] almost simple) and the set of (twisted) elliptic conjugacy classes in the Weyl group. We also prove a homogeneity property related to this correspondence.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0758262)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/S1088-4165-2014-00455-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleDistinguished conjugacy classes and elliptic Weyl group elementsen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G. “Distinguished Conjugacy Classes and Elliptic Weyl Group Elements.” Representation Theory of the American Mathematical Society 18.8 (2014): 223–277. © 2014 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLusztig, George
dc.relation.journalRepresentation Theoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLusztig, G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9414-6892
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record