Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2016-10-28T21:43:47Z
dc.date.available2016-10-28T21:43:47Z
dc.date.issued2015-10
dc.date.submitted2015-08
dc.identifier.issn1088-4165
dc.identifier.urihttp://hdl.handle.net/1721.1/105153
dc.description.abstractLet G(F[subscript q]) be the group of rational points of a split connected reductive group G over the finite field F[subscript q]. In this paper we show that the category of representations of G(F[subscript q]) which are finite direct sums of unipotent representations in a fixed two-sided cell is equivalent to the centre of a certain monoidal category of sheaves on the flag manifold of G x G. We also consider a version of this for nonsplit groups.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1303060)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/ert/468en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleUnipotent representations as a categorical centreen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G. “Unipotent Representations as a Categorical Centre.” Representation Theory of the American Mathematical Society 19.9 (2015): 211–235. © 2015 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLusztig, George
dc.relation.journalRepresentation Theoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLusztig, G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9414-6892
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record