Show simple item record

dc.contributor.authorFang, S.
dc.contributor.authorSanchez-Yamagishi, J. D.
dc.contributor.authorWatanabe, K.
dc.contributor.authorTaniguchi, T.
dc.contributor.authorKaxiras, E.
dc.contributor.authorCao, Y.
dc.contributor.authorFatemi, Valla
dc.contributor.authorLuo, J. Y.
dc.contributor.authorJarillo-Herrero, Pablo
dc.date.accessioned2016-11-03T17:47:06Z
dc.date.available2016-11-03T17:47:06Z
dc.date.issued2016-09
dc.date.submitted2016-06
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/105180
dc.description.abstractTwisted bilayer graphene (TBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moiré physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov–de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moiré wave vector.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1405221)en_US
dc.description.sponsorshipNature Society (Singapore)en_US
dc.description.sponsorshipGordon and Betty Moore Foundation (Grant GBMF4541)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Harvard University. Materials Research Science and Engineering Center. Grant DMR-0819762)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Harvard University. Center for Integrated Quantum Material. Grant ECS-0335765)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (STC Center for Integrated Quantum Materials. Grant DMR- 1231319)en_US
dc.description.sponsorshipUnited States. Army Research Office. Multidisciplinary University Research Initiative (Award W911NF-14-0247)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.117.116804en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleSuperlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Grapheneen_US
dc.typeArticleen_US
dc.identifier.citationCao, Y. et al. “Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene.” Physical Review Letters 117.11 (2016): n. pag. © 2016 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorCao, Y.
dc.contributor.mitauthorFatemi, Valla
dc.contributor.mitauthorLuo, J. Y.
dc.contributor.mitauthorJarillo-Herrero, Pablo
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-09-07T22:00:07Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsCao, Y.; Luo, J. Y.; Fatemi, V.; Fang, S.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3648-7706
dc.identifier.orcidhttps://orcid.org/0000-0001-8217-8213
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record