Show simple item record

dc.contributor.authorCisinski, Denis-Charles
dc.contributor.authorTrigo Neri Tabuada, Goncalo Jorge
dc.date.accessioned2016-11-04T18:05:53Z
dc.date.available2016-11-04T18:05:53Z
dc.date.issued2014
dc.date.submitted2013-03
dc.identifier.issn1661-6952
dc.identifier.urihttp://hdl.handle.net/1721.1/105201
dc.description.abstractV. Lunts has recently established Lefschetz fixed point theorems for Fourier-Mukai functors and dg algebras. In the same vein, D. Shklyarov introduced the noncommutative analogue of the Hirzebruch-Riemman-Roch theorem. In this short article, we see how these constructions and computations formally stem from their motivic counterparts.en_US
dc.description.sponsorshipNEC Corporation (Award 2742738)en_US
dc.language.isoen_US
dc.publisherEuropean Mathematical Society Publishing Houseen_US
dc.relation.isversionofhttp://dx.doi.org/10.4171/JNCG/183en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLefschetz and Hirzebruch–Riemann–Roch formulas via noncommutative motivesen_US
dc.typeArticleen_US
dc.identifier.citationCisinski, Denis-Charles, and Gonçalo Tabuada. “Lefschetz and Hirzebruch–Riemann–Roch Formulas via Noncommutative Motives.” Journal of Noncommutative Geometry 8.4 (2014): 1171–1190.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTrigo Neri Tabuada, Goncalo Jorge
dc.relation.journalJournal of Noncommutative Geometryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCisinski, Denis-Charles; Tabuada, Gonçaloen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5558-9236
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record