Show simple item record

dc.contributor.authorCai, Tommy Wuxing
dc.contributor.authorStanley, Richard P
dc.date.accessioned2016-11-04T18:16:23Z
dc.date.available2016-11-04T18:16:23Z
dc.date.issued2015-06
dc.date.submitted2014-08
dc.identifier.issn0002-9939
dc.identifier.issn1088-6826
dc.identifier.urihttp://hdl.handle.net/1721.1/105203
dc.description.abstractWe prove a conjecture of Miller and Reiner on the Smith normal form of the operator DU associated with a differential poset for the special case of Young's lattice. Equivalently, this operator can be described as [∂ over ∂p1]p1 acting on homogeneous symmetric functions of degree n.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grant DMS-1068625)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/proc/12642en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleThe Smith normal form of a matrix associated with Young’s latticeen_US
dc.typeArticleen_US
dc.identifier.citationCai, Tommy Wuxing, and Richard P. Stanley. “The Smith Normal Form of a Matrix Associated with Young’s Lattice.” Proceedings of the American Mathematical Society 143.11 (2015): 4695–4703.© 2015 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorStanley, Richard P
dc.relation.journalProceedings of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCai, Tommy Wuxing; Stanley, Richard P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record