Show simple item record

dc.contributor.authorNannicini, Giacomo
dc.contributor.authorBelotti, Pietro
dc.date.accessioned2016-11-04T20:33:54Z
dc.date.available2016-11-04T20:33:54Z
dc.date.issued2011-09
dc.date.submitted2010-08
dc.identifier.issn1867-2949
dc.identifier.issn1867-2957
dc.identifier.urihttp://hdl.handle.net/1721.1/105215
dc.description.abstractWe propose two primal heuristics for nonconvex mixed-integer nonlinear programs. Both are based on the idea of rounding the solution of a continuous nonlinear program subject to linear constraints. Each rounding step is accomplished through the solution of a mixed-integer linear program. Our heuristics use the same algorithmic scheme, but they differ in the choice of the point to be rounded (which is feasible for nonlinear constraints but possibly fractional) and in the linear constraints. We propose a feasibility heuristic, that aims at finding an initial feasible solution, and an improvement heuristic, whose purpose is to search for an improved solution within the neighborhood of a given point. The neighborhood is defined through local branching cuts or box constraints. Computational results show the effectiveness in practice of these simple ideas, implemented within an open-source solver for nonconvex mixed-integer nonlinear programs.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s12532-011-0032-xen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleRounding-based heuristics for nonconvex MINLPsen_US
dc.typeArticleen_US
dc.identifier.citationNannicini, Giacomo, and Pietro Belotti. “Rounding-Based Heuristics for Nonconvex MINLPs.” Mathematical Programming Computation 4.1 (2012): 1–31.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorNannicini, Giacomo
dc.relation.journalMathematical Programming Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:37:07Z
dc.language.rfc3066en
dc.rights.holderSpringer and Mathematical Optimization Society
dspace.orderedauthorsNannicini, Giacomo; Belotti, Pietroen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record