Show simple item record

dc.contributor.authorWang, Hua
dc.contributor.authorGou, Gaoyang
dc.contributor.authorLi, Ju
dc.date.accessioned2016-11-07T22:02:04Z
dc.date.available2016-11-07T22:02:04Z
dc.date.issued2016-02
dc.date.submitted2016-02
dc.identifier.issn2211-2855
dc.identifier.urihttp://hdl.handle.net/1721.1/105243
dc.description.abstractPerovskite ferroelectric materials exhibit the novel ferroelectric photovoltaic effect, where photon-excited electron–hole pairs can be separated by ferroelectric polarization. Especially, semiconducting ferroelectric materials with small band gaps (E[subscript g]) have been extensively studied for applications in solar energy conversion. Traditional route for creating semiconducting ferroelectrics requires cation doping, where E[subscript g] of the insulating perovskite ferroelectric oxides are reduced via substitution of certain cations. But cation doping tends to reduce the carrier mobility due to the scattering, and usually lead to poor photovoltaic efficiency. In the present work, based on first-principles calculations, we propose and demonstrate a new strategy for designing stoichiometric semiconducting perovskite ferroelectric materials. Specifically, we choose the parent non-polar semiconducting perovskite sulfides AB S[subscript 3] with Pnma symmetry, and turn them into ferroelectric Ruddlesden–Popper A[subscript 3]B[subscript 2]S[subscript 7] perovskites with spontaneous polarizations. Our predicted Ruddlesden–Popper Ca[subscript 3]Zr[subscript 2]S[subscript 7] and other derived compounds exhibit the room-temperature stable ferroelectricity, small band gaps (E[subscript g] < 2.2 eV) suitable for the absorption of visible light, and large visible-light absorption exceeding that of Si.en_US
dc.description.sponsorshipNational Basic Research Program of China (973 Program) (Contract 2012CB619402)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Contract 11574244)en_US
dc.description.sponsorshipChina. Ministry of Education (Program for Innovative Research Team in University. Contract IRT13034)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1410636)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.nanoen.2016.02.036en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleRuddlesden–Popper perovskite sulfides A[subscript 3]B[subscript 2]S[subscript 7]: A new family of ferroelectric photovoltaic materials for the visible spectrumen_US
dc.title.alternativeRuddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrumen_US
dc.typeArticleen_US
dc.identifier.citationWang, Hua, Gaoyang Gou, and Ju Li. “Ruddlesden–Popper Perovskite Sulfides A3B2S7: A New Family of Ferroelectric Photovoltaic Materials for the Visible Spectrum.” Nano Energy 22 (2016): 507–513.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorLi, Ju
dc.relation.journalNano Energyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, Hua; Gou, Gaoyang; Li, Juen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record