MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On advantages of the Kelvin mapping in finite element implementations of deformation processes

Author(s)
Nagel, Thomas; Görke, Uwe-Jens; Kolditz, Olaf; Moerman, Kevin M
Thumbnail
Download12665_2016_Article_5429.pdf (481.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Classical continuum mechanical theories operate on three-dimensional Euclidian space using scalar, vector, and tensor-valued quantities usually up to the order of four. For their numerical treatment, it is common practice to transform the relations into a matrix–vector format. This transformation is usually performed using the so-called Voigt mapping. This mapping does not preserve tensor character leaving significant room for error as stress and strain quantities follow from different mappings and thus have to be treated differently in certain mathematical operations. Despite its conceptual and notational difficulties having been pointed out, the Voigt mapping remains the foundation of most current finite element programmes. An alternative is the so-called Kelvin mapping which has recently gained recognition in studies of theoretical mechanics. This article is concerned with benefits of the Kelvin mapping in numerical modelling tools such as finite element software. The decisive difference to the Voigt mapping is that Kelvin’s method preserves tensor character, and thus the numerical matrix notation directly corresponds to the original tensor notation. Further benefits in numerical implementations are that tensor norms are calculated identically without distinguishing stress- or strain-type quantities, and tensor equations can be directly transformed into matrix equations without additional considerations. The only implementational changes are related to a scalar factor in certain finite element matrices, and hence, harvesting the mentioned benefits comes at very little cost.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/105251
Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
Environmental Earth Sciences
Publisher
Springer Berlin Heidelberg
Citation
Nagel, Thomas et al. “On Advantages of the Kelvin Mapping in Finite Element Implementations of Deformation Processes.” Environmental Earth Sciences 75.11 (2016): n. pag.
Version: Author's final manuscript
ISSN
1866-6280
1866-6299

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.