Show simple item record

dc.contributor.authorSaltiel, Philippe
dc.contributor.authorD'Avella, Andrea
dc.contributor.authorWyler-Duda, Kuno
dc.contributor.authorBizzi, Emilio
dc.date.accessioned2016-11-07T23:13:37Z
dc.date.available2016-11-07T23:13:37Z
dc.date.issued2015-10
dc.date.submitted2014-12
dc.identifier.issn1863-2653
dc.identifier.issn1863-2661
dc.identifier.urihttp://hdl.handle.net/1721.1/105252
dc.description.abstractLocomotion is produced by a central pattern generator. Its spinal cord organization is generally considered to be distributed, with more rhythmogenic rostral lumbar segments. While this produces a rostrocaudally traveling wave in undulating species, this is not thought to occur in limbed vertebrates, with the exception of the interneuronal traveling wave demonstrated in fictive cat scratching (Cuellar et al. J Neurosci 29:798–810, 2009). Here, we reexamine this hypothesis in the frog, using the seven muscle synergies A to G previously identified with intraspinal NMDA (Saltiel et al. J Neurophysiol 85:605–619, 2001). We find that locomotion consists of a sequence of synergy activations (A–B–G–A–F–E–G). The same sequence is observed when focal NMDA iontophoresis in the spinal cord elicits a caudal extension-lateral force-flexion cycle (flexion onset without the C synergy). Examining the early NMDA-evoked motor output at 110 sites reveals a rostrocaudal topographic organization of synergy encoding by the lumbar cord. Each synergy is preferentially activated from distinct regions, which may be multiple, and partially overlap between different synergies. Comparing the sequence of synergy activation in locomotion with their spinal cord topography suggests that the locomotor output is achieved by a rostrocaudally traveling wave of activation in the swing–stance cycle. A two-layer circuitry model, based on this topography and a traveling wave reproduces this output and explores its possible modifications under different afferent inputs. Our results and simulations suggest that a rostrocaudally traveling wave of excitation takes advantage of the topography of interneuronal regions encoding synergies, to activate them in the proper sequence for locomotion.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NS 09343)en_US
dc.description.sponsorshipSwiss National Science Foundationen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00429-015-1133-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSynergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotionen_US
dc.typeArticleen_US
dc.identifier.citationSaltiel, Philippe et al. “Synergy Temporal Sequences and Topography in the Spinal Cord: Evidence for a Traveling Wave in Frog Locomotion.” Brain Structure and Function 221.8 (2016): 3869–3890.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorSaltiel, Philippe
dc.contributor.mitauthorD'Avella, Andrea
dc.contributor.mitauthorWyler-Duda, Kuno
dc.contributor.mitauthorBizzi, Emilio
dc.relation.journalBrain Structure and Functionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:27:07Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsSaltiel, Philippe; d’Avella, Andrea; Wyler-Duda, Kuno; Bizzi, Emilioen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-7644-4498
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record