MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combustion of Synthetic Jet Fuel: Chemical Kinetic Modeling and Uncertainty Analysis

Author(s)
Wagner, Andrew L.; Yelvington, Paul E.; Cai, Jianghuai; Green, William H
Thumbnail
DownloadCombustion of Synthetic Jet Fuel.pdf (1.172Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Reaction mechanisms for jet-fuel combustion were built with the aim of providing a better description of the chemistry to reacting flow simulations used to design future aircraft engines. This research effort focused on combustion of Fischer–Tropsch synthetic jet fuel (S-8) in vitiated air at conditions relevant to jet engines, augmentors, and interturbine burners (T=650–1700  K P=1–20  atm, and Φ=0.5–2 in air). The complex S-8 fuel mixture was approximated with a two-component surrogate mixture of n-decane and iso-octane. A wholly new, elementary-step reaction mechanism for the surrogate consisting of 291 species and 6900 reactions was constructed using automatic mechanism generation software. Statistical analyses were conducted to determine reaction rate-constant sensitivity, model prediction uncertainty, and consistency of the model with published ignition delay time data. As a test application, the S-8 reaction model was used to estimate augmentor static stability using a simple Damköhler number analysis that showed increased stability with temperature from 800 to 1400 K and NO concentration from 0 to 1000 ppm (v/v). The ability to quickly generate accurate mechanisms for simple surrogates allows for new synthetic fuels to be quickly modeled and their behavior predicted for an array of experimental conditions and practical applications.
Date issued
2016-08
URI
http://hdl.handle.net/1721.1/105331
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of Propulsion and Power
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Citation
Wagner, Andrew L., Paul E. Yelvington, Jianghuai Cai, and William H. Green. “Combustion of Synthetic Jet Fuel: Chemical Kinetic Modeling and Uncertainty Analysis.” Journal of Propulsion and Power (August 26, 2016), pp. 1-10.
Version: Author's final manuscript
ISSN
0748-4658
1533-3876

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.