Show simple item record

dc.contributor.authorDe Picciotto, Seymour
dc.contributor.authorImperiali, Barbara
dc.contributor.authorGriffith, Linda G
dc.contributor.authorWittrup, Karl Dane
dc.date.accessioned2016-11-17T22:35:45Z
dc.date.available2016-11-17T22:35:45Z
dc.date.issued2014-05
dc.date.submitted2014-04
dc.identifier.issn0003-2697
dc.identifier.issn1096-0309
dc.identifier.urihttp://hdl.handle.net/1721.1/105345
dc.description.abstractReagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic response characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. These concepts are broadly relevant to reagentless biosensor modalities.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.). Integrative Cancer Biology Program (Grant 1 U54 CA112967)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 EB 010246)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ab.2014.04.036en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleEquilibrium and dynamic design principles for binding molecules engineered for reagentless biosensorsen_US
dc.typeArticleen_US
dc.identifier.citationde Picciotto, Seymour et al. “Equilibrium and Dynamic Design Principles for Binding Molecules Engineered for Reagentless Biosensors.” Analytical Biochemistry 460 (2014): 9–15.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorDe Picciotto, Seymour
dc.contributor.mitauthorImperiali, Barbara
dc.contributor.mitauthorGriffith, Linda G
dc.contributor.mitauthorWittrup, Karl Dane
dc.relation.journalAnalytical Biochemistryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsde Picciotto, Seymour; Imperiali, Barbara; Griffith, Linda G.; Wittrup, K. Daneen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5749-7869
dc.identifier.orcidhttps://orcid.org/0000-0002-1801-5548
dc.identifier.orcidhttps://orcid.org/0000-0003-2398-5896
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record