Symmetric and nonsymmetric Koornwinder polynomials in the q → 0 limit
Author(s)
Venkateswaran, Vidya
Download10801_2015_Article_583.pdf (592.2Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Koornwinder polynomials are a 6-parameter BC[subscript n]-symmetric family of Laurent polynomials indexed by partitions, from which Macdonald polynomials can be recovered in suitable limits of the parameters. As in the Macdonald polynomial case, standard constructions via difference operators do not allow one to directly control these polynomials at q=0. In the first part of this paper, we provide an explicit construction for these polynomials in this limit, using the defining properties of Koornwinder polynomials. Our formula is a first step in developing the analogy between Hall–Littlewood polynomials and Koornwinder polynomials at q=0. In the second part of the paper, we provide a construction for the nonsymmetric Koornwinder polynomials in the same limiting case; this parallels work by Descouens–Lascoux in type A. As an application, we prove an integral identity for Koornwinder polynomials at q=0.
Date issued
2015-02Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Journal of Algebraic Combinatorics
Publisher
Springer US
Citation
Venkateswaran, Vidya. “Symmetric and Nonsymmetric Koornwinder Polynomials in the q → 0 limit.” Journal of Algebraic Combinatorics 42.2 (2015): 331–364.
Version: Author's final manuscript
ISSN
0925-9899
1572-9192