Show simple item record

dc.contributor.authorZou, J.
dc.contributor.authorMarcet, Z.
dc.contributor.authorKravchenko, I. I.
dc.contributor.authorLu, T.
dc.contributor.authorBao, Y.
dc.contributor.authorChan, H. B.
dc.contributor.authorRodriguez, Alejandro
dc.contributor.authorReid, McMahon Thomas Homer
dc.contributor.authorMcCauley, Alexander Patrick
dc.contributor.authorJohnson, Steven G
dc.date.accessioned2016-11-18T18:08:47Z
dc.date.available2016-11-18T18:08:47Z
dc.date.issued2013-05
dc.date.submitted2012-11
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/105362
dc.description.abstractQuantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, utilization of Casimir forces on the chip level remains a major challenge because all experiments so far require an external object to be manually positioned close to the mechanical element. Here by integrating a force-sensing micromechanical beam and an electrostatic actuator on a single chip, we demonstrate the Casimir effect between two micromachined silicon components on the same substrate. A high degree of parallelism between the two near-planar interacting surfaces can be achieved because they are defined in a single lithographic step. Apart from providing a compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (contract N66001-09-1-2070- DOD)en_US
dc.description.sponsorshipSingapore-MIT Alliance. Program in Computational Engineeringen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms2842en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleCasimir forces on a silicon micromechanical chipen_US
dc.typeArticleen_US
dc.identifier.citationZou, J. et al. “Casimir Forces on a Silicon Micromechanical Chip.” Nature Communications 4 (2013): 1845.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorRodriguez, Alejandro
dc.contributor.mitauthorReid, McMahon Thomas Homer
dc.contributor.mitauthorMcCauley, Alexander Patrick
dc.contributor.mitauthorJohnson, Steven G
dc.relation.journalNature Communicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZou, J.; Marcet, Z.; Rodriguez, A. W.; Reid, M. T. H.; McCauley, A. P.; Kravchenko, I. I.; Lu, T.; Bao, Y.; Johnson, S. G.; Chan, H. B.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7327-4967
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record