Show simple item record

dc.contributor.authorAlMarzooqi, Faisal A.
dc.contributor.authorArafat, Hassan A.
dc.contributor.authorSwaminathan, Jaichander
dc.contributor.authorChung, Hyung Won
dc.contributor.authorWarsinger, David Elan Martin
dc.contributor.authorLienhard, John H
dc.date.accessioned2016-11-18T23:13:03Z
dc.date.available2016-11-18T23:13:03Z
dc.date.issued2015-12
dc.date.submitted2015-10
dc.identifier.issn03767388
dc.identifier.urihttp://hdl.handle.net/1721.1/105372
dc.description.abstractThis work presents numerical modeling results and flux experiments for a novel membrane distillation configuration called conductive gap membrane distillation (CGMD), as well as permeate gap membrane distillation (PGMD). CGMD has a conductive spacer in the gap between the membrane and condensing surface rather than more commonly used insulating materials. Flux measurements with two experimental systems are used to validate the numerical models for PGMD and CGMD. PGMD has 20% higher GOR (energy efficiency) than an air gap membrane distillation (AGMD) system of the same size, whereas CGMD can have two times higher GOR than even PGMD. Increasing gap effective thermal conductivity in CGMD has negligible benefits beyond View the MathML source under the conditions of this study. The direction of pure water flow in the gap has a significant influence on overall system energy efficiency, especially in the case of CGMD. Using a countercurrent configuration for the pure water flow in the gap relative to the cold stream leads to 40% higher GOR than flow cocurrent with the cold water stream.en_US
dc.description.sponsorshipMIT & Masdar Institute Cooperative Program (Reference no. 02/MI/MI/CP/11/07633/ GEN/G/00)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.memsci.2015.12.017en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Lienhard via Angie Locknaren_US
dc.titleEnergy efficiency of permeate gap and novel conductive gap membrane distillationen_US
dc.typeArticleen_US
dc.identifier.citationSwaminathan, Jaichander, Hyung Won Chung, David M. Warsinger, Faisal A. AlMarzooqi, Hassan A. Arafat, and John H. Lienhard V. “Energy Efficiency of Permeate Gap and Novel Conductive Gap Membrane Distillation.” Journal of Membrane Science 502 (March 2016): 171–178.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentRohsenow Kendall Heat Transfer Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.approverLienhard, John H.en_US
dc.contributor.mitauthorLienhard, John H
dc.contributor.mitauthorSwaminathan, Jaichander
dc.contributor.mitauthorChung, Hyung Won
dc.contributor.mitauthorWarsinger, David Elan Martin
dc.relation.journalJournal of Membrane Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSwaminathan, Jaichander; Chung, Hyung Won; Warsinger, David M.; AlMarzooqi, Faisal A.; Arafat, Hassan A.; Lienhard V, John H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2901-0638
dc.identifier.orcidhttps://orcid.org/0000-0001-8375-2694
dc.identifier.orcidhttps://orcid.org/0000-0003-3446-1473
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record