Show simple item record

dc.contributor.authorFerralis, Nicola
dc.contributor.authorJagannathan, Deepak
dc.contributor.authorGrossman, Jeffrey C.
dc.contributor.authorVan Vliet, Krystyn J
dc.date.accessioned2016-11-21T20:04:12Z
dc.date.available2016-11-21T20:04:12Z
dc.date.issued2015-08
dc.date.submitted2015-04
dc.identifier.issn0884-2914
dc.identifier.issn2044-5326
dc.identifier.urihttp://hdl.handle.net/1721.1/105387
dc.description.abstractThe initial microscale mechanisms and materials interfacial process responsible for hydration of calcium silicates are poorly understood even in model systems. The lack of a measured microscale chemical signature has confounded understanding of growth mechanisms and kinetics for microreaction volumes. Here, we use Raman and optical spectroscopies to quantify hydration and environmental carbonation of tricalcium silicates across length and time scales. We show via spatially resolved chemical analysis that carbonate formation during the initial byproduct in microscale reaction volumes is significant, even for subambient CO2 levels. We propose that the competition between carbonation and hydration is enhanced strongly in microscale reaction volumes by increased surface-to-volume ratio relative to macroscale volumes, and by increased concentration of dissolved Ca2+ ions under poor hydration conditions that promote evaporation. This in situ analysis provides the first direct correlation between microscale interfacial hydration and carbonation environments and chemically defined reaction products in cementitious materials.en_US
dc.description.sponsorshipUnited States. Department of Homeland Security. Science and Technology Directorateen_US
dc.description.sponsorshipMIT Concrete Sustainability Huben_US
dc.description.sponsorshipPortland Cement Associationen_US
dc.description.sponsorshipReady Mixed Concrete (RMC) Research & Education Foundation
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1557/jmr.2015.224en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Grossman via Angie Locknaren_US
dc.titleUnintended consequences: Why carbonation can dominate in microscale hydration of calcium silicatesen_US
dc.typeArticleen_US
dc.identifier.citationFerralis, Nicola, Deepak Jagannathan, Jeffrey C. Grossman, and Krystyn J. Van Vliet. “Unintended Consequences: Why Carbonation Can Dominate in Microscale Hydration of Calcium Silicates.” J. Mater. Res. 30, no. 16 (August 2015): 2425-2433. © Materials Research Society 2015.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorFerralis, Nicola
dc.contributor.mitauthorJagannathan, Deepak
dc.contributor.mitauthorGrossman, Jeffrey C.
dc.contributor.mitauthorVan Vliet, Krystyn J
dc.relation.journalJournal of Materials Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFerralis, Nicola; Jagannathan, Deepak; Grossman, Jeffrey C.; Van Vliet, Krystyn J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4148-2424
dc.identifier.orcidhttps://orcid.org/0000-0003-1281-2359
dc.identifier.orcidhttps://orcid.org/0000-0001-5735-0560
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record