Show simple item record

dc.contributor.authorYu, Xiankai
dc.contributor.authorShi, Yixiang
dc.contributor.authorWang, Hongjian
dc.contributor.authorCai, Ningsheng
dc.contributor.authorLi, Chen
dc.contributor.authorTomov, Rumen I.
dc.contributor.authorGlowacki, Bartek A.
dc.contributor.authorHanna, Jeffrey
dc.contributor.authorGhoniem, Ahmed F
dc.date.accessioned2016-11-21T21:29:23Z
dc.date.available2016-11-21T21:29:23Z
dc.date.issued2013-06
dc.date.submitted2013-05
dc.identifier.issn03787753
dc.identifier.urihttp://hdl.handle.net/1721.1/105391
dc.description.abstractA detailed mechanistic model for solid oxide electrolyte direct carbon fuel cell (SO-DCFC) is developed while considering the thermo-chemical and electrochemical elementary reactions in both the carbon bed and the SOFC, as well as the meso-scale transport processes within the carbon bed and the SOFC electrode porous structures. The model is validated using data from a fixed bed carbon gasification experiment and the SO-DCFC performance testing experiments carried out using different carrier gases and at various temperatures. The analyzes of the experimental and modeling results indicate the strong influence of the carrier gas on the cell performance. The coupling between carbon gasification and electrochemical oxidation on the SO-DCFC performance that results in an unusual transition zone in the cell polarization curve was predicted by the model, and analyzed in detail at the elementary reaction level. We conclude that the carbon bed physical properties such as the bed height, char conversion ratio and fuel utilization, as well as the temperature significantly limit the performance of the SO-DCFC.en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (20776078)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (51106085)en_US
dc.description.sponsorshipLow Carbon Energy University Alliance (LCEUA) (Seed Funding)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jpowsour.2013.05.149en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Ghoniem via Angie Locknaren_US
dc.titleExperimental characterization and elementary reaction modeling of solid oxide electrolyte direct carbon fuel cellen_US
dc.typeArticleen_US
dc.identifier.citationYu, Xiankai, Yixiang Shi, Hongjian Wang, Ningsheng Cai, Chen Li, Rumen I. Tomov, Jeffrey Hanna, Bartek A. Glowacki, and Ahmed F. Ghoniem. “Experimental Characterization and Elementary Reaction Modeling of Solid Oxide Electrolyte Direct Carbon Fuel Cell.” Journal of Power Sources 243 (December 2013): 159–171.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorHanna, Jeffrey
dc.contributor.mitauthorGhoniem, Ahmed F
dc.relation.journalJournal of Power Sourcesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYu, Xiankai; Shi, Yixiang; Wang, Hongjian; Cai, Ningsheng; Li, Chen; Tomov, Rumen I.; Hanna, Jeffrey; Glowacki, Bartek A.; Ghoniem, Ahmed F.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8730-272X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record