MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards accurate three-dimensional simulation of dense multi-phase flows using cylindrical coordinates

Author(s)
Bakshi, Akhilesh; Altantzis, Christos; Ghoniem, Ahmed F
Thumbnail
DownloadBakshi2014_PowderTechnology.pdf (13.28Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Most industrial scale fluidized-bed reactors are cylindrical, and the cylindrical coordinate system is a natural choice for their CFD simulation. There are, however, subtle complexities associated with this choice when using the Two-Fluid Model. The center of the grid forms a computational “boundary” and requires special treatment. Conventionally, a free slip no-normal flow condition has been used which does not predict the hydrodynamics accurately even when predicted parameters are in good agreement with measurement. Another difficulty is posed by the extremely small cells near the grid center, especially when simulating small scale experiments. The presence of these small cells raises concerns over the applicability of the Two-Fluid Model and is known to result in slow simulation convergence. These issues are addressed in the present study and appropriate solutions are proposed including the centerline treatment and the use of a non-uniform grid. Finally, the study compares the Cartesian grid with the cylindrical grid for application to fluidization. It is shown that simulating a cylindrical bed using the cylindrical grid is not only more accurate but also more computationally efficient. The analysis presented along with the proven computational efficiency of the cylindrical grid is especially significant considering that modeling commercial scale reactors, with multiple solid phases and chemical reactions, not only will require accurate description of the fluidization process but will also be exceedingly expensive in terms of computational cost.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/105408
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Powder Technology
Publisher
Elsevier
Citation
Bakshi, A., C. Altantzis, and A.F. Ghoniem. “Towards Accurate Three-Dimensional Simulation of Dense Multi-Phase Flows Using Cylindrical Coordinates.” Powder Technology 264 (September 2014): 242-255.
Version: Author's final manuscript
ISSN
00325910

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.