MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Concentrated solar power on demand

Author(s)
Nave, Jean-Christophe; Papanicolas, Costas N.; Slocum, Alexander H; Codd, Daniel Shawn; Buongiorno, Jacopo; Forsberg, Charles W; Ghobeity, Amin; Noone, Corey James; Passerini, Stefano; Rojas, Folkers; Mitsos, Alexander; McKrell, Thomas J.; ... Show more Show less
Thumbnail
DownloadCSPonD_ms_SolarEnergyX4-clean.pdf (883.9Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
A concentrating solar power system is presented which uses hillside mounted heliostats to direct sunlight into a volumetric absorption molten salt receiver with integral storage. The concentrated sunlight penetrates and is absorbed by molten salt in the receiver through a depth of 4–5 m, making the system insensitive to the passage of clouds. The receiver volume also acts as the thermal storage volume eliminating the need for secondary hot and cold salt storage tanks. A small aperture and refractory-lined domed roof reduce losses to the environment and reflect thermal radiation back into the pond. Hot salt is pumped from the top of the tank through a steam generator and then returned to the bottom of the tank. An insulated barrier plate is positioned within the tank to provide a physical and thermal barrier between the thermally stratified layers, maintaining hot and cold salt volumes required for continuous operation. As a result, high temperature thermal energy can be provided 24/7 or at any desired time. The amount of storage required depends on local needs and economic conditions. About 2500 m[superscript 3] of nitrate salt is needed to operate a 4 MW[subscript e] steam turbine 24/7 (7 h sunshine, 17 h storage), and with modest heliostat field oversizing to accumulate energy, the system could operate for an additional 24 h (1 cloudy day). Alternatively, this same storage volume can supply a 50 MWe turbine for 3.25 h without additional solar input. Cosine effect losses associated with hillside heliostats beaming light downwards to the receiver are offset by the elimination of a tower and separate hot and cold storage tanks and their associated pumping systems. Reduced system complexity also reduces variable costs. Using the NREL Solar Advisor program, the system is estimated to realize cost-competitive levelized production costs of electricity.
Date issued
2011-05
URI
http://hdl.handle.net/1721.1/105409
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Solar Energy
Publisher
Elsevier
Citation
Slocum, Alexander H., Daniel S. Codd, Jacopo Buongiorno, Charles Forsberg, Thomas McKrell, Jean-Christophe Nave, Costas N. Papanicolas, et al. “Concentrated Solar Power on Demand.” Solar Energy 85, no. 7 (July 2011): 1519-1529.
Version: Author's final manuscript
ISSN
0038092X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.