Show simple item record

dc.contributor.authorStechlinski, Peter G
dc.contributor.authorBarton, Paul I
dc.date.accessioned2016-11-22T18:35:17Z
dc.date.available2017-06-19T21:40:54Z
dc.date.issued2016-07
dc.identifier.issn0022-3239
dc.identifier.issn1573-2878
dc.identifier.urihttp://hdl.handle.net/1721.1/105419
dc.description.abstractNonsmooth equation-solving and optimization algorithms which require local sensitivity information are extended to systems with nonsmooth parametric differential–algebraic equations embedded. Nonsmooth differential–algebraic equations refers here to semi-explicit differential–algebraic equations with algebraic equations satisfying local Lipschitz continuity and differential right-hand side functions satisfying Carathéodory-like conditions. Using lexicographic differentiation, an auxiliary nonsmooth differential–algebraic equation system is obtained whose unique solution furnishes the desired parametric sensitivities. More specifically, lexicographic derivatives of solutions of nonsmooth parametric differential–algebraic equations are obtained. Lexicographic derivatives have been shown to be elements of the plenary hull of the Clarke (generalized) Jacobian and thus computationally relevant in the aforementioned algorithms. To accomplish this goal, the lexicographic smoothness of an extended implicit function is proved. Moreover, these generalized derivative elements can be calculated in tractable ways thanks to recent advancements in nonsmooth analysis. Forward sensitivity functions for nonsmooth parametric differential–algebraic equations are therefore characterized, extending the classical sensitivity results for smooth parametric differential–algebraic equations.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipNovartis-MIT Center for Continuous Manufacturingen_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10957-016-0988-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleGeneralized Derivatives of Differential–Algebraic Equationsen_US
dc.typeArticleen_US
dc.identifier.citationStechlinski, Peter G., and Paul I. Barton. “Generalized Derivatives of Differential–Algebraic Equations.” Journal of Optimization Theory and Applications 171.1 (2016): 1–26.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Process Systems Engineering Laboratoryen_US
dc.contributor.mitauthorStechlinski, Peter G
dc.contributor.mitauthorBarton, Paul I
dc.relation.journalJournal of Optimization Theory and Applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-09-16T03:59:18Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsStechlinski, Peter G.; Barton, Paul I.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-5162-4951
dc.identifier.orcidhttps://orcid.org/0000-0003-2895-9443
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record