Show simple item record

dc.contributor.authorRohlfs, Wilko
dc.contributor.authorThiel, Gregory P.
dc.contributor.authorLienhard, John H.
dc.date.accessioned2016-11-28T15:38:22Z
dc.date.available2016-11-28T15:38:22Z
dc.date.issued2016-03
dc.date.submitted2016-03
dc.identifier.issn03767388
dc.identifier.urihttp://hdl.handle.net/1721.1/105436
dc.description.abstractAccurate models for concentration polarization (CP), the buildup of solutes at the membrane–solution interface in reverse osmosis (RO) channels, are critical for predicting system performance. Despite its empirical success, many modeling approximations employed in the derivation of the often-used stagnant film model seem to limit the model's applicability to real systems. In addition, many existing models for CP use an average mass transfer coefficient with a local mass transfer driving force, which leads to incorrect predictions for the osmotic pressure at the membrane–channel interface. In this work, we reduce the Zydney-transformed governing equations for solute mass transfer to an analogous convective heat transfer problem. We then apply the principle of superposition to fit solutions from the heat transfer problem to the RO channel boundary conditions, yielding a solution that correctly and consistently combines a local transport coefficient with a local mass transfer driving force. The resulting expression for RO element sizing and rating shows good agreement with experimental data and provides a theoretical basis for CP modeling that captures the characteristic growth of the mass transfer boundary layer not accounted for by many existing, more empirical models. The model has important consequences for the design of RO systems with high permeability membranes, as the decrease in membrane resistance in these systems leads to a relative increase in the importance of CP in system performance.en_US
dc.description.sponsorshipGerman Academic Exchange Service (DAAD fellowship)en_US
dc.description.sponsorshipKing Fahd University of Petroleum and Minerals (Center for Clean Water and Clean Energy at MIT and KFUPM, project number R13-CW-10)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.memsci.2016.03.049en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Lienhard via Angie Locknaren_US
dc.titleModeling reverse osmosis element design using superposition and an analogy to convective heat transferen_US
dc.typeArticleen_US
dc.identifier.citationRohlfs, Wilko, Gregory P. Thiel, and John H. Lienhard V. “Modeling Reverse Osmosis Element Design Using Superposition and an Analogy to Convective Heat Transfer.” Journal of Membrane Science 512 (August 2016): 38-49.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverLienhard, John H.en_US
dc.contributor.mitauthorRohlfs, Wilko
dc.contributor.mitauthorThiel, Gregory P.
dc.contributor.mitauthorLienhard, John H.
dc.relation.journalJournal of Membrane Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRohlfs, Wilko; Thiel, Gregory P.; Lienhard V, John H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8756-4778
dc.identifier.orcidhttps://orcid.org/0000-0002-4583-1057
dc.identifier.orcidhttps://orcid.org/0000-0002-2901-0638
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record