MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strategyproof Facility Location for Concave Cost Functions

Author(s)
Fotakis, Dimitris; Tzamos, Christos
Thumbnail
Download453_2015_26_ReferencePDF.pdf (211.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We consider k-Facility Location games, where n strategic agents report their locations on the real line and a mechanism maps them to k facilities. Each agent seeks to minimize his connection cost, given by a nonnegative increasing function of his distance to the nearest facility. Departing from previous work, that mostly considers the identity cost function, we are interested in mechanisms without payments that are (group) strategyproof for any given cost function, and achieve a good approximation ratio for the social cost and/or the maximum cost of the agents. We present a randomized mechanism, called Equal Cost, which is group strategyproof and achieves a bounded approximation ratio for all k and n, for any given concave cost function. The approximation ratio is at most 2 for Max Cost and at most n for Social Cost. To the best of our knowledge, this is the first mechanism with a bounded approximation ratio for instances with k ≥ 3 facilities and any number of agents. Our result implies an interesting separation between deterministic mechanisms, whose approximation ratio for Max Cost jumps from 2 to unbounded when k increases from 2 to 3, and randomized mechanisms, whose approximation ratio remains at most 2 for all k. On the negative side, we exclude the possibility of a mechanism with the properties of Equal Cost for strictly convex cost functions. We also present a randomized mechanism, called Pick the Loser, which applies to instances with k facilities and only n=k+1 agents. For any given concave cost function, Pick the Loser is strongly group strategyproof and achieves an approximation ratio of 2 for Social Cost.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/105444
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Algorithmica
Publisher
Springer US
Citation
Fotakis, Dimitris, and Christos Tzamos. “Strategyproof Facility Location for Concave Cost Functions.” Algorithmica 76.1 (2016): 143–167.
Version: Author's final manuscript
ISSN
0178-4617
1432-0541

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.