Show simple item record

dc.contributor.authorGuth, Lawrence
dc.date.accessioned2016-11-29T15:31:23Z
dc.date.available2016-11-29T15:31:23Z
dc.date.issued2014-12
dc.date.submitted2014-11
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/105456
dc.description.abstractWe give a shorter proof of a slightly weaker version of a theorem from Guth and Katz (Ann Math 181:155–190, 2015): we prove that if L is a set of L lines in R[superscript 3] with at most L[superscript 1/2] lines in any low degree algebraic surface, then the number of r-rich points of is L is ≲ L[superscript (3/2) + ε] r[superscript -2]. This result is one of the main ingredients in the proof of the distinct distance estimate in Guth and Katz (2015). With our slightly weaker theorem, we get a slightly weaker distinct distance estimate: any set of N points in R[superscript 2] c[subscript ε]N[superscript 1-ε] distinct distances.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-014-9648-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleDistinct Distance Estimates and Low Degree Polynomial Partitioningen_US
dc.typeArticleen_US
dc.identifier.citationGuth, Larry. “Distinct Distance Estimates and Low Degree Polynomial Partitioning.” Discrete & Computational Geometry 53.2 (2015): 428–444.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuth, Lawrence
dc.relation.journalDiscrete & Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:41:13Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsGuth, Larryen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-1302-8657
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record