Show simple item record

dc.contributor.authorScherz-Shouval, R.
dc.contributor.authorGalie, P. A.
dc.contributor.authorWhitesell, L.
dc.contributor.authorChen, C. S.
dc.contributor.authorBagley, Alexander F
dc.contributor.authorZhang, Angela Q.
dc.contributor.authorWyckoff, Jeffrey
dc.contributor.authorLindquist, Susan
dc.contributor.authorBhatia, Sangeeta N
dc.date.accessioned2016-11-30T16:36:40Z
dc.date.available2016-11-30T16:36:40Z
dc.date.issued2015-08
dc.identifier.issn0008-5472
dc.identifier.issn1538-7445
dc.identifier.urihttp://hdl.handle.net/1721.1/105476
dc.description.abstractThe delivery of diagnostic and therapeutic agents to solid tumors is limited by physical transport barriers within tumors, and such restrictions directly contribute to decreased therapeutic efficacy and the emergence of drug resistance. Nanomaterials designed to perturb the local tumor environment with precise spatiotemporal control have demonstrated potential to enhance drug delivery in preclinical models. Here, we investigated the ability of one class of heat-generating nanomaterials called plasmonic nanoantennae to enhance tumor transport in a xenograft model of ovarian cancer. We observed a temperature-dependent increase in the transport of diagnostic nanoparticles into tumors. However, a transient, reversible reduction in this enhanced transport was seen upon reexposure to heating, consistent with the development of vascular thermotolerance. Harnessing these observations, we designed an improved treatment protocol combining plasmonic nanoantennae with diffusion-limited chemotherapies. Using a microfluidic endothelial model and genetic tools to inhibit the heat-shock response, we found that the ability of thermal preconditioning to limit heat-induced cytoskeletal disruption is an important component of vascular thermotolerance. This work, therefore, highlights the clinical relevance of cellular adaptations to nanomaterials and identifies molecular pathways whose modulation could improve the exposure of tumors to therapeutic agents.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (David H. Koch Institute for Integrative Cancer Research at MIT. Support Grant P30-CA14051)en_US
dc.description.sponsorshipNational Institute of Environmental Health Sciences (Core Center Grant P30-ES002109)en_US
dc.description.sponsorshipMarie D. and Pierre Casimir-Lambert Funden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grants UH3 EB017103, R01 EB000262 and U54CA151884)en_US
dc.description.sponsorshipMIT-Harvard Center of Cancer Nanotechnology Excellenceen_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (MSTP Grant T32GM007753)en_US
dc.description.sponsorshipHarvard Medical School. Harvard-MIT MD-PhD Programen_US
dc.language.isoen_US
dc.publisherAmerican Association for Cancer Researchen_US
dc.relation.isversionofhttp://dx.doi.org/10.1158/0008-5472.CAN-15-0325en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleEndothelial Thermotolerance Impairs Nanoparticle Transport in Tumorsen_US
dc.typeArticleen_US
dc.identifier.citationBagley, A. F. et al. “Endothelial Thermotolerance Impairs Nanoparticle Transport in Tumors.” Cancer Research 75.16 (2015): 3255–3267.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorBagley, Alexander F
dc.contributor.mitauthorZhang, Angela Q.
dc.contributor.mitauthorWyckoff, Jeffrey
dc.contributor.mitauthorLindquist, Susan
dc.contributor.mitauthorBhatia, Sangeeta N
dc.relation.journalCancer Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBagley, A. F.; Scherz-Shouval, R.; Galie, P. A.; Zhang, A. Q.; Wyckoff, J.; Whitesell, L.; Chen, C. S.; Lindquist, S.; Bhatia, S. N.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0930-302X
dc.identifier.orcidhttps://orcid.org/0000-0003-2599-2774
dc.identifier.orcidhttps://orcid.org/0000-0003-1307-882X
dc.identifier.orcidhttps://orcid.org/0000-0002-1293-2097
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record