Show simple item record

dc.contributor.authorFriston, Karl J.
dc.contributor.authorPinotsis, Dimitrios
dc.contributor.authorLoonis, Roman Florian
dc.contributor.authorBastos, Andre M
dc.contributor.authorMiller, Earl K
dc.date.accessioned2016-12-02T16:07:41Z
dc.date.available2016-12-02T16:07:41Z
dc.date.issued2016-10
dc.date.submitted2015-12
dc.identifier.issn0896-0267
dc.identifier.issn1573-6792
dc.identifier.urihttp://hdl.handle.net/1721.1/105522
dc.description.abstractNeural rhythms or oscillations are ubiquitous in neuroimaging data. These spectral responses have been linked to several cognitive processes; including working memory, attention, perceptual binding and neuronal coordination. In this paper, we show how Bayesian methods can be used to finesse the ill-posed problem of reconstructing—and explaining—oscillatory responses. We offer an overview of recent developments in this field, focusing on (i) the use of MEG data and Empirical Bayes to build hierarchical models for group analyses—and the identification of important sources of inter-subject variability and (ii) the construction of novel dynamic causal models of intralaminar recordings to explain layer-specific activity. We hope to show that electrophysiological measurements contain much more spatial information than is often thought: on the one hand, the dynamic causal modelling of non-invasive (low spatial resolution) electrophysiology can afford sub-millimetre (hyper-acute) resolution that is limited only by the (spatial) complexity of the underlying (dynamic causal) forward model. On the other hand, invasive microelectrode recordings (that penetrate different cortical layers) can reveal laminar-specific responses and elucidate hierarchical message passing and information processing within and between cortical regions at a macroscopic scale. In short, the careful and biophysically grounded modelling of sparse data enables one to characterise the neuronal architectures generating oscillations in a remarkable detail.en_US
dc.description.sponsorshipWellcome Trust (London, England) (Grant 088130/Z/09/Z, NIMH R37MH087027)en_US
dc.description.sponsorshipPicower Institute Innovation Funden_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10548-016-0526-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleBayesian Modelling of Induced Responses and Neuronal Rhythmsen_US
dc.typeArticleen_US
dc.identifier.citationPinotsis, Dimitris A. et al. “Bayesian Modelling of Induced Responses and Neuronal Rhythms.” Brain Topography (2016): n. pag.en_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorPinotsis, Dimitrios
dc.contributor.mitauthorLoonis, Roman Florian
dc.contributor.mitauthorBastos, Andre M
dc.contributor.mitauthorMiller, Earl K
dc.relation.journalBrain Topographyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-10-08T04:02:14Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsPinotsis, Dimitris A.; Loonis, Roman; Bastos, Andre M.; Miller, Earl K.; Friston, Karl J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1804-4418
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record