MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer

Author(s)
Ware, John W.; Roy, Nicholas
Thumbnail
DownloadRoy_An analysis.pdf (1.814Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Although unmanned air vehicles' increasing agility and autonomy may soon allow for flight in urban environments, the impact of complex urban wind fields on vehicle flight performance remains unclear. Unlike synoptic winds at high altitudes, urban wind fields are subject to turbulence generated by the buildings and terrain. The resulting spatial and temporal variation makes inference about the global wind field based on local wind measurements difficult and prevents the use of most simple wind models. Fortunately, the structure of the urban environment provides exploitable predictability given a suitable computational fluid dynamics solver, a representative 3D model of the environment, and an estimate of the expected prevailing wind speed and heading. The prevailing wind speed and direction at altitude and computational fluid dynamics solver can generate the corresponding wind field estimate over the map. By generating wind fields in this way, this work investigates a quadrotor's ability to exploit them for improved flight performance. Along with the wind field estimate, an empirically derived power consumption model is used to find minimum-energy trajectories with a planner both aware of and naive to the wind field. When compared to minimum-energy trajectories that do not incorporate wind conditions, the wind-aware trajectories demonstrate reduced flight times, total energy expenditures, and failures due to excess air speed for trajectories across MIT campus.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/105726
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
IEEE International Conference on Robotics and Automation, 2016
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Ware, John, and Nicholas Roy. “An Analysis of Wind Field Estimation and Exploitation for Quadrotor Flight in the Urban Canopy Layer.” IEEE, 2016. 1507–1514.
Version: Author's final manuscript
ISBN
978-1-4673-8026-3

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.