Show simple item record

dc.contributor.authorSatija, Rahul
dc.contributor.authorFarrell, Jeffrey A
dc.contributor.authorGennert, David
dc.contributor.authorSchier, Alexander F
dc.contributor.authorRegev, Aviv
dc.date.accessioned2016-12-07T20:58:05Z
dc.date.available2016-12-07T20:58:05Z
dc.date.issued2015-04
dc.date.submitted2014-09
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/105746
dc.description.abstractSpatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.en_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.description.sponsorshipKlarman Cell Observatoryen_US
dc.description.sponsorshipNational Human Genome Research Institute (U.S.) (Centers for Excellence in Genomics Science 1P50HG006193)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.3192en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleSpatial reconstruction of single-cell gene expression dataen_US
dc.typeArticleen_US
dc.identifier.citationSatija, Rahul et al. “Spatial Reconstruction of Single-Cell Gene Expression Data.” Nature Biotechnology 33.5 (2015): 495–502.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorRegev, Aviv
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSatija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviven_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8567-2049
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record