Show simple item record

dc.contributor.authorEntova-Aizenbud, Inna
dc.date.accessioned2016-12-09T19:32:26Z
dc.date.available2016-12-09T19:32:26Z
dc.date.issued2016-02
dc.date.submitted2014-10
dc.identifier.issn0925-9899
dc.identifier.issn1572-9192
dc.identifier.urihttp://hdl.handle.net/1721.1/105783
dc.description.abstractThe Kronecker coefficients are the structural constants for the tensor categories of representations of the symmetric groups, namely, given three partitions λ,μ,τ of n, the multiplicity of λ in μ⊗τ is called the Kronecker coefficient g[superscript λ][subscript μ,τ]. When the first part of each of the partitions is taken to be very large (the remaining parts being fixed), the values of the appropriate Kronecker coefficients stabilize; the stable value is called the reduced (or stable) Kronecker coefficient. These coefficients also generalize the Littlewood–Richardson coefficients and have been studied quite extensively. In this paper, we show that reduced Kronecker coefficients appear naturally as structure constants of Deligne categories [bar under Rep](S[subscript t]). This allows us to interpret various properties of the reduced Kronecker coefficients as categorical properties of Deligne categories [bar under Rep](S[subscript t]) and derive new combinatorial identities.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10801-016-0672-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleDeligne categories and reduced Kronecker coefficientsen_US
dc.typeArticleen_US
dc.identifier.citationEntova Aizenbud, Inna. “Deligne Categories and Reduced Kronecker Coefficients.” Journal of Algebraic Combinatorics 44.2 (2016): 345–362.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEntova-Aizenbud, Inna
dc.relation.journalJournal of Algebraic Combinatoricsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:42:27Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsEntova Aizenbud, Innaen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-0226-1859
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record