Show simple item record

dc.contributor.authorChen, Yu Fan
dc.contributor.authorLiu, Miao
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2016-12-12T20:00:31Z
dc.date.available2016-12-12T20:00:31Z
dc.date.issued2016-05
dc.identifier.isbn978-1-4673-8026-3
dc.identifier.urihttp://hdl.handle.net/1721.1/105795
dc.description.abstractDeveloping accurate models and efficient representations of multivariate trajectories is important for understanding the behavior patterns of mobile agents. This work presents a dictionary learning algorithm for developing a part-based trajectory representation, which combines merits of the existing Markovian-based and clustering-based approaches. In particular, this work presents the augmented semi-nonnegative sparse coding (ASNSC) algorithm for solving a constrained dictionary learning problem, and shows that the proposed method would converge to a local optimum given a convexity condition. We consider a trajectory modeling application, in which the learned dictionary atoms correspond to local motion patterns. Classical semi-nonnegative sparse coding approaches would add dictionary atoms with opposite signs to reduce the representational error, which can lead to learning noisy dictionary atoms that correspond poorly to local motion patterns. ASNSC addresses this problem and learns a concise set of intuitive motion patterns. ASNSC shows significant improvement over existing trajectory modeling methods in both prediction accuracy and computational time, as revealed by extensive numerical analysis on real datasets.en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2016.7487407en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAugmented dictionary learning for motion predictionen_US
dc.typeArticleen_US
dc.identifier.citationChen, Yu Fan, Miao Liu, and Jonathan P. How. “Augmented Dictionary Learning for Motion Prediction.” IEEE, 2016. 2527–2534.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorChen, Yu Fan
dc.contributor.mitauthorLiu, Miao
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journalIEEE International Conference on Robotics and Automation, 2016. ICRA '16.en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsChen, Yu Fan; Liu, Miao; How, Jonathan P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3756-3256
dc.identifier.orcidhttps://orcid.org/0000-0002-1648-8325
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record