Show simple item record

dc.contributor.authorAgha-mohammadi, Ali-akbar
dc.contributor.authorAmato, Christopher
dc.contributor.authorVian, John
dc.contributor.authorOmidshafiei, Shayegan
dc.contributor.authorLiu, Shih-Yuan
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2016-12-12T20:21:36Z
dc.date.available2016-12-12T20:21:36Z
dc.date.issued2016-05
dc.identifier.isbn978-1-4673-8026-3
dc.identifier.urihttp://hdl.handle.net/1721.1/105797
dc.description.abstractThis paper introduces a probabilistic algorithm for multi-robot decision-making under uncertainty, which can be posed as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP). Dec-POMDPs are inherently synchronous decision-making frameworks which require significant computational resources to be solved, making them infeasible for many real-world robotics applications. The Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) was recently introduced as an extension of the Dec-POMDP that uses high-level macro-actions to allow large-scale, asynchronous decision-making. However, existing Dec-POSMDP solution methods have limited scalability or perform poorly as the problem size grows. This paper proposes a cross-entropy based Dec-POSMDP algorithm motivated by the combinatorial optimization literature. The algorithm is applied to a constrained package delivery domain, where it significantly outperforms existing Dec-POSMDP solution methods.en_US
dc.description.sponsorshipBoeing Companyen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2016.7487751en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleGraph-based Cross Entropy method for solving multi-robot decentralized POMDPsen_US
dc.typeArticleen_US
dc.identifier.citationOmidshafiei, Shayegan et al. “Graph-Based Cross Entropy Method for Solving Multi-Robot Decentralized POMDPs.” IEEE, 2016. 5395–5402.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorOmidshafiei, Shayegan
dc.contributor.mitauthorLiu, Shih-Yuan
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journalIEEE International Conference on Robotics and Automation, 2016. '16 ICRAen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsOmidshafiei, Shayegan; Agha-mohammadi, Ali-akbar; Amato, Christopher; Liu, Shih-Yuan; How, Jonathan P.; Vian, Johnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0903-0137
dc.identifier.orcidhttps://orcid.org/0000-0002-9838-1221
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record