MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust incremental SLAM with consistency-checking

Author(s)
How, Jonathan P; Graham, Matthew C.; Gustafson, Donald E.
Thumbnail
DownloadRobust.pdf (510.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Incorrect landmark and loop closure measurements can cause standard SLAM algorithms to fail catastrophically. Recently, several SLAM algorithms have been proposed that are robust to loop closure errors, but it is shown in this paper that they cannot provide robust solutions when landmark measurement errors occur. The root cause of this problem is that the robust SLAM algorithms only focus on generating solutions that are locally consistent (i.e. each measurement agrees with its corresponding estimates) rather than globally consistent (i.e. all of the measurements in the solution agree with each other). Moreover, these algorithms do not attempt to maximize the number of correct measurements included in the solution, meaning that often correct measurements are ignored and the solution quality suffers as a result. This paper proposes a new formulation of the robust SLAM problem that seeks a globally consistent map that also maximizes the number of measurements included in the solution. In addition, a novel incremental SLAM algorithm, called incremental SLAM with consistency-checking, is developed to solve the new robust SLAM problem. Finally, simulated and experimental results show that the new algorithm significantly outperforms state-of-the-art robust SLAM methods for datasets with incorrect landmark measurements and can match their performance for datasets with incorrect loop closures.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/105808
Department
Charles Stark Draper Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015. IROS 2015.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Graham, Matthew C., Jonathan P. How, and Donald E. Gustafson. “Robust Incremental SLAM with Consistency-Checking.” IEEE, 2015. 117–124.
Version: Original manuscript
ISBN
978-1-4799-9994-1

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.