Show simple item record

dc.contributor.authorEvery, Arthur G.
dc.contributor.authorDennett, Cody Andrew
dc.contributor.authorCao, Penghui
dc.contributor.authorVega-Flick, Alejandro
dc.contributor.authorFerry, Sara E
dc.contributor.authorMaznev, Alexei
dc.contributor.authorNelson, Keith Adam
dc.contributor.authorShort, Michael P
dc.date.accessioned2016-12-14T19:33:22Z
dc.date.available2016-12-14T19:33:22Z
dc.date.issued2016-12
dc.date.submitted2016-10
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/105817
dc.description.abstractDirect mesoscale measurements of radiation-induced changes in the mechanical properties of bulk materials remain difficult to perform. Most widely used characterization techniques are either macro- or microscale in nature, focusing on overall properties or overly small areas for analysis. Linking the atomic structure of irradiated materials directly with their radiation-affected properties remains one of the largest unmet challenges in radiation materials science. By measuring the change in surface acoustic wave speed as a function of relative orientation on metallic single crystals, we demonstrate that transient grating (TG) spectroscopy experiments have the sensitivity necessary to detect radiation-induced material property changes. We also show that classical molecular dynamics (MD) simulations can be used to accurately simulate orientation-based changes in surface acoustic wave speed in TG experiments, by comparing with experimental measurements and theoretical predictions. The agreement between theory, simulation, and experiment gives confidence in classical MD as a predictive tool to simulate defect-based changes in elastic properties, which cannot yet be fully treated by theory. This ability is of critical importance for the informed use of TG spectroscopy to measure material property changes induced by radiation damage, which may vary by amounts formerly too small for reliable in situ detection. Finally, our MD simulation framework is used to study the effect of an imposed vacancy population on the acoustic response of several materials. The results of these studies indicate that TG experiments are well suited to the ex situ and in situ study of radiation-induced material property changes.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1122374)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CHE-1111557)en_US
dc.description.sponsorshipTransatomic Power (Award 023875-001)en_US
dc.description.sponsorshipU.S. Nuclear Regulatory Commission (MIT Nuclear Education Faculty Development Program. Grant NRC-HQ- 84-15-G-0045)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.94.214106en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleBridging the gap to mesoscale radiation materials science with transient grating spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationDennett, Cody A. et al. “Bridging the Gap to Mesoscale Radiation Materials Science with Transient Grating Spectroscopy.” Physical Review B 94.21 (2016): n. pag. © 2016 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorDennett, Cody Andrew
dc.contributor.mitauthorCao, Penghui
dc.contributor.mitauthorVega-Flick, Alejandro
dc.contributor.mitauthorFerry, Sara E
dc.contributor.mitauthorMaznev, Alexei
dc.contributor.mitauthorNelson, Keith Adam
dc.contributor.mitauthorShort, Michael P
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-12-13T23:00:05Z
dc.language.rfc3066en
dc.rights.holderauthors
dspace.orderedauthorsDennett, Cody A.; Cao, Penghui; Ferry, Sara E.; Vega-Flick, Alejandro; Maznev, Alexei A.; Nelson, Keith A.; Every, Arthur G.; Short, Michael P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2989-9550
dc.identifier.orcidhttps://orcid.org/0000-0002-7505-9571
dc.identifier.orcidhttps://orcid.org/0000-0001-7804-5418
dc.identifier.orcidhttps://orcid.org/0000-0002-9216-2482
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record