MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle

Author(s)
Drapkin, R.; Dreaden, Erik; Kong, Yi Wen; Morton, Stephen Winford; Correa Echavarria, Santiago; Choi, Ki Young; Shopsowitz, Kevin; Renggli-Frey, Kasper; Yaffe, Michael B; Hammond, Paula T; ... Show more Show less
Thumbnail
DownloadYaffe_Tumor-targeted.pdf (447.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Purpose: Cross-talk and feedback between the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cell signaling pathways is critical for tumor initiation, maintenance, and adaptive resistance to targeted therapy in a variety of solid tumors. Combined blockade of these pathways—horizontal blockade—is a promising therapeutic strategy; however, compounded dose-limiting toxicity of free small molecule inhibitor combinations is a significant barrier to its clinical application. Experimental Design: AZD6244 (selumetinib), an allosteric inhibitor of Mek1/2, and PX-866, a covalent inhibitor of PI3K, were co-encapsulated in a tumor-targeting nanoscale drug formulation—layer-by-layer (LbL) nanoparticles. Structure, size, and surface charge of the nanoscale formulations were characterized, in addition to in vitro cell entry, synergistic cell killing, and combined signal blockade. In vivo tumor targeting and therapy was investigated in breast tumor xenograft-bearing NCR nude mice by live animal fluorescence/bioluminescence imaging, Western blotting, serum cytokine analysis, and immunohistochemistry. Results: Combined MAPK and PI3K axis blockade from the nanoscale formulations (160 ± 20 nm, −40 ± 1 mV) was synergistically toxic toward triple-negative breast (MDA-MB-231) and RAS-mutant lung tumor cells (KP7B) in vitro, effects that were further enhanced upon encapsulation. In vivo, systemically administered LbL nanoparticles preferentially targeted subcutaneous MDA-MB-231 tumor xenografts, simultaneously blocked tumor-specific phosphorylation of the terminal kinases Erk and Akt, and elicited significant disease stabilization in the absence of dose-limiting hepatotoxic effects observed from the free drug combination. Mice receiving untargeted, but dual drug-loaded nanoparticles exhibited progressive disease. Conclusions: Tumor-targeting nanoscale drug formulations could provide a more safe and effective means to synergistically block MAPK and PI3K in the clinic.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/105871
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemical Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Clinical Cancer Research
Publisher
American Association for Cancer Research
Citation
Dreaden, E. C. et al. “Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle.” Clinical Cancer Research 21.19 (2015): 4410–4419.
Version: Author's final manuscript
ISSN
1078-0432
1557-3265

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.