Show simple item record

dc.contributor.authorHorodecki, Michał
dc.contributor.authorBrandão, Fernando G. S. L.
dc.contributor.authorHarrow, Aram W
dc.date.accessioned2016-12-21T14:32:31Z
dc.date.available2017-06-19T21:40:54Z
dc.date.issued2016-08
dc.date.submitted2014-07
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttp://hdl.handle.net/1721.1/105908
dc.description.abstractWe prove that local random quantum circuits acting on n qubits composed of O(t[superscript 10]n[superscript 2]) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O(t[superscript 10]n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O(n[superscript k]) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O(n[superscript (k-9)/11]) that are given oracle access to U.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00220-016-2706-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleLocal Random Quantum Circuits are Approximate Polynomial-Designsen_US
dc.typeArticleen_US
dc.identifier.citationBrandão, Fernando G. S. L., Aram W. Harrow, and Michał Horodecki. “Local Random Quantum Circuits Are Approximate Polynomial-Designs.” Communications in Mathematical Physics 346.2 (2016): 397–434.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorHarrow, Aram W
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-09-01T12:00:21Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsBrandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michałen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-3220-7682
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record