Show simple item record

dc.contributor.authorCampbell, Trevor David
dc.contributor.authorStraub, Julian
dc.contributor.authorFisher, John W
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2016-12-22T21:23:37Z
dc.date.available2016-12-22T21:23:37Z
dc.date.issued2015-12
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/106134
dc.description.abstractThis paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N000141110688)en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttps://papers.nips.cc/paper/5876-streaming-distributed-variational-inference-for-bayesian-nonparametricsen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNIPSen_US
dc.titleStreaming, distributed variational inference for Bayesian nonparametricsen_US
dc.typeArticleen_US
dc.identifier.citationCampell, Trevor et al. "Streaming, Distributed Variational Inference for Bayesian Nonparametrics" Advances in Neural Information Processing Systems (NIPS 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorCampbell, Trevor David
dc.contributor.mitauthorStraub, Julian
dc.contributor.mitauthorFisher, John W
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journalAdvances in Neural Information Processing Systems (NIPS 2015)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCampbell, Trevor; Straub, Julian; Fisher, John W. III; How, Jonathan, P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1499-0191
dc.identifier.orcidhttps://orcid.org/0000-0003-2339-1262
dc.identifier.orcidhttps://orcid.org/0000-0003-4844-3495
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record