Show simple item record

dc.contributor.authorAltshuler, Alex
dc.contributor.authorSholes, Jacquelyn E. C.
dc.contributor.authorFriedman, Alexander
dc.contributor.authorSlocum, Joshua Foster
dc.contributor.authorTyulmankov, Danil
dc.contributor.authorGibb, Leif G.
dc.contributor.authorRuangwises, Suthee
dc.contributor.authorShi, Qinru
dc.contributor.authorToro Arana, Sebastian
dc.contributor.authorBeck, Dirk W.
dc.contributor.authorGraybiel, Ann M
dc.date.accessioned2016-12-27T21:30:10Z
dc.date.available2016-12-27T21:30:10Z
dc.date.issued2016-06
dc.date.submitted2016-02
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/106154
dc.description.abstractA universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 MH060379)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-10-1-0059)en_US
dc.description.sponsorshipSaks-Kavanaugh Foundationen_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1606280113en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleAnalysis of complex neural circuits with nonlinear multidimensional hidden state modelsen_US
dc.typeArticleen_US
dc.identifier.citationFriedman, Alexander et al. “Analysis of Complex Neural Circuits with Nonlinear Multidimensional Hidden State Models.” Proceedings of the National Academy of Sciences 113.23 (2016): 6538–6543. © 2016 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorFriedman, Alexander
dc.contributor.mitauthorSlocum, Joshua Foster
dc.contributor.mitauthorTyulmankov, Danil
dc.contributor.mitauthorGibb, Leif G.
dc.contributor.mitauthorRuangwises, Suthee
dc.contributor.mitauthorShi, Qinru
dc.contributor.mitauthorToro Arana, Sebastian
dc.contributor.mitauthorBeck, Dirk W.
dc.contributor.mitauthorGraybiel, Ann M
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFriedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1913-1396
dc.identifier.orcidhttps://orcid.org/0000-0002-4326-7720
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record