MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Profiling relational data: a survey

Author(s)
Abedjan, Ziawasch; Golab, Lukasz; Naumann, Felix
Thumbnail
Download778_2015_Article_389.pdf (1.029Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/106176
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
The VLDB Journal
Publisher
Springer Berlin Heidelberg
Citation
Abedjan, Ziawasch, Lukasz Golab, and Felix Naumann. “Profiling Relational Data: A Survey.” The VLDB Journal 24.4 (2015): 557–581.
Version: Author's final manuscript
ISSN
1066-8888
0949-877X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.